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Abstract
We study the influence of a vacuum instability on the effective energy–
momentum tensor (EMT) of QED, in the presence of a quasi-constant external
electric field, by means of the relevant Green functions. In the case when the
initial vacuum, |0, in〉, differs essentially from the final vacuum, |0, out〉, we find
explicitly and compare both the vacuum average value of EMT, 〈0, in|Tµν |0, in〉,
and the matrix element, 〈0, out|Tµν |0, in〉. In the course of the calculation, we
solve the problem of the special divergences connected with infinite time T
of action of the constant electric field. The EMT of a pair created by an
electric field from the initial vacuum is presented. The relations of the obtained
expressions to Euler–Heisenberg’s effective action are established.

PACS numbers: 12.20.Ds, 11.10.Wx

1. Introduction

Currently, an effective action method, originating with Euler and Heisenberg’s one-loop
effective action, is one of the commonly used approaches of QFT. Nevertheless, we can see
that if an external electric field is involved then naive calculations by analogy with a magnetic
field case can be erroneous. For example, thermally influenced pair production in a constant
electric field has been searched via several attempts at generalization for one-loop effective
action at a finite temperature with extremely contrary results. We would like to express that
the vacuum instability in an electric background opens additional channels of interaction due
to particle creation from the vacuum. That is the reason why the above-mentioned simple
analogy does not work, regardless of thermal influence, and we have to refine the set up of the
problem. For simplicity of explanation in this talk, we suppose that the temperature is equal
to zero1.
1 We will present the relevant generalization for one-loop effects at finite temperature anywhere.
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The relevant intense field method, applicable to the theory with unstable vacuum in
the case of a time-varying external field (called the generalized Furry representation), can
be found in [2]2. Following this method we see that the effective perturbation theory with
respect to the radiative interaction for the matrix elements of the scattering processes and
another one for the expectation values differ by the type of the one-particle Green function
due to the nontrivial difference between a final vacuum, |0, out〉, and an initial vacuum,
|0, in〉, cv = 〈0, out|0, in〉, |cv|2 �= 1. Feynman diagrams for the matrix elements of the
scattering processes have to be calculated by means of the causal propagator

Sc(x, x ′) = c−1
v i〈0, out|T ψ(x)ψ̄(x ′)|0, in〉, (1)

where ψ(x) is a massive (m) quantum spinor field satisfying the Dirac equation with an
external field. In the calculation of the expectation values one has to use the one-particle
Green functions

Sc
in(x, x ′) = i〈0, in|T ψ(x)ψ̄(x ′)|0, in〉,

Sc
out(x, x ′) = i〈0, out|T ψ(x)ψ̄(x ′)|0, out〉.

(2)

Both differ from the causal propagator (1). Additionally, these distinct Green functions are
used to represent various matrix elements of operators of the current and energy–momentum
tensor (EMT), and effective action beginning with zeroth order with respect to the radiative
interaction. Euler and Heisenberg’s one-loop effective action Yout−in is related to the causal
propagator, Yout−in = i Tr ln Sc. Varying Yout−in, given by the Fock–Schwinger proper time
representation [1], one gets the following matrix elements of the operators of a current density,
jµ, and EMT, Tµν , in the one-loop approximation:

〈jµ〉c = 〈0, out|jµ|0, in〉c−1
v , 〈Tµν〉c = 〈0, out|Tµν |0, in〉c−1

v , (3)

where the operators jµ and Tµν are in the generalized Furry representation,

jµ = q

2
[ψ̄(x), γµψ(x)], Tµν = 1

2

(
T can

µν + T can
νµ

)
,

T can
µν = 1

4
{[ψ̄(x), γµPνψ(x)] + [P ∗

ν ψ̄(x), γµψ(x)]}, (4)

Pµ = i∂µ − qAµ(x), q = −e.

On the other hand, at a time instant x0 the average values of jµ and Tµν operators in the
one-loop approximation are the following:

〈jµ〉in = 〈0, in|jµ|0, in〉, 〈Tµν〉in = 〈0, in|Tµν |0, in〉. (5)

The equalities 〈jµ〉in = 〈jµ〉c and 〈Tµν〉in = 〈Tµν〉c hold strictly for theory with stable vacuum.
Thus, the well-known explicit expression of Yout−in [1] is useless for the calculation of any
average values and we see it is desirable to find the relevant one-loop effective description for
QED with a constant uniform electromagnetic field.

2. Proper time representation

To see the difference between Sc
in and Sc, explicitly one can express these functions via the sets

of the appropriate solutions of the Dirac equation in an external field (see details in [2]). First,
we need two complete and orthonormal sets of the in/out-solutions of the Dirac equation,
{±ψn(x)}/{±ψn(x)}. They describe particles (+) and antiparticles (−) at the initial/final time

2 The extension of such an approach for finite temperature QED was presented in [3].
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instant x0
in

/
x0

out. Second, we find decomposition coefficients G(ζ |ζ ′
) of the out-solutions in

the in-solutions3,
ζψ(x) = +ψ(x)G(+|ζ ) + −ψ(x)G(−|ζ ). (6)

Then from (1), we get the Feynman definition

Sc(x, x ′) = θ(x0 − x ′
0)S

−(x, x ′) − θ(x ′
0 − x0)S

+(x, x ′),

S−(x, x ′) = i
∑
n,m

+ψn(x)G(+|+)−1
nm+ψ̄m(x ′), (7)

S+(x, x ′) = i
∑
n,m

−ψn(x)[G(−|−)−1]∗nm
−ψ̄m(x ′),

and for Sc
in, we have

Sc
in(x, x ′) = θ(x0 − x ′

0)S
−
in(x, x ′) − θ(x ′

0 − x0)S
+
in(x, x ′),

S∓
in (x, x ′) = i

∑
n

±ψn(x)±ψ̄n(x
′). (8)

Then one can express the difference as follows:

Sa(x, x ′) = Sc(x, x ′) − Sc
in(x, x ′), (9)

Sa(x, x ′) = −i
∑
nm

−ψn(x)[G(+|−)G(−|−)−1]†nm+ψ̄m(x ′),

and the similar expression can be written for Sp(x, x ′) = Sc(x, x ′) − Sc
out(x, x ′). Only if the

vacuum is stable then all the coefficients G(+|−), and then Sa, Sp are equal to zero.
We consider the general case of a constant uniform electromagnetic field, Fµν , with

nonzero invariants where an electric field is given by the time-dependent potential. For
simplicity, we choose the reference frame in which the electric, E, and magnetic, B, fields are
parallel and directed along the x3 axis.

All the singular functions in a constant uniform electromagnetic field can be represented
[6] as the following Fock–Schwinger proper time integrals:

Sc,a,p(x, x ′) = (γP + m)�c,a,p(x, x ′),

�c(x, x ′) =
∫

�c

f (x, x ′, s) ds =
∫ ∞

0
f (x, x ′, s) ds,

�a/p(x, x ′) = 1

2
��2(x, x ′) + �ā/p̄(x, x ′),

��2(x, x ′) =
∫

�2

f (x, x ′, s) ds,

�ā/p̄(x, x ′) =
[
	(±y3) − 1

2

] ∫
�2

f (x, x ′, s) ds +
∫

�a

f (x, x ′, s) ds

+ 	(±y3)

∫
�3−�a

f (x, x ′, s) ds, y3 = x3 − x ′
3

(10)

where f (x, x ′, s) is the known Fock–Schwinger proper time kernel [1] and all the contours
of the integrals are shown in figure 1. The contours �c and �1 are placed below the singular
points on the real axis everywhere outside the origin. Outside the origin the kernel has only
one singular point, s1 = −iπ/eE, on the complex region between the line of the contours
�c − �1 and the line of the contours �a − �3.
3 We are using a convention of summation/integration over discrete/continuous repeated indices and a compact
notation where all summations/integrations are suppressed, for example ψnGnm = (ψG)m. In addition h̄ = c = 1
throughout this paper.
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Figure 1. Contours of integration �1, �2, �3, �c, �a .

By using these representations, one can uniformly express all the matrix elements of the
jµ and Tµν operators, as follows:

〈jµ〉in = 〈jµ〉c − 〈jµ〉a, 〈Tµν〉in = 〈Tµν〉c − 〈Tµν〉a,
〈jµ〉out = 〈jµ〉c − 〈jµ〉p, 〈Tµν〉out = 〈Tµν〉c − 〈Tµν〉p,

〈jµ〉c,a,p = iq trs{γµγ νPν�
c,a,p(x, x ′)}|x=x ′ , (11)

〈Tµν〉c,a,p = i trs{Bµν�
c,a,p(x, x ′)}|x=x ′ ,

Bµν = 1/4{γµ(Pν + P ′∗
ν) + γν(Pµ + P ′∗

µ)}γ κPκ,

P ′∗
µ = −i

∂

∂x ′µ − qAµ(x ′),

where trs{. . .} is the trace of an product of the Dirac gamma matrices.
The expression for the term 〈jµ〉c in (11) is finite after the proper time regularization

lifting and equal to zero. The components 〈jµ〉a/p for µ �= 3 are equal to zero, as well. All the
off-diagonal matrix elements of 〈Tµν〉c,a,p are equal to zero. It is precisely the term 〈Tµν〉c that
can be derived from the Heisenberg–Euler effective Lagrangian, L. Performing the standard
renormalizations, leaving eFµν invariant, one gets the finite expression of 〈Tµν〉c as follows:

〈T00〉ceff = −〈T33〉ceff = E
∂L
∂E

− L, 〈T11〉ceff = 〈T22〉ceff = L,

L =
∫ ∞

0

ds

8π2s
e−im2s

[
e2EB coth(eEs) cot(eBs) − 1

s2
− e2

3
(E2 − B2)

]
.

Bearing in mind that 〈Tµν〉�2 = 2i Im〈Tµν〉c, we get for the average values of the operators
jµ and Tµν the following explicitly real expressions:

〈jµ〉in = −〈jµ〉ā , 〈Tµν〉in
eff = Re〈Tµν〉ceff − 〈Tµν〉ā . (12)

The terms 〈jµ〉ā/p and 〈Tµν〉ā/p are proportional to the factor exp{−πm2/eE}. Thus, they
are related to global features of the theory and indicate the vacuum instability. These matrix
elements are free from the standard ultraviolet divergences. However, with such terms we
run into special kind of divergences in the constant electric field due to the contributions from
derivatives of 	(±y3) functions and singular point s1. The nature of such special divergences
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is connected with the infinite time T of action of the constant electric field. They have to be
regularized with respect to time T of acting of a constant electric field.

3. Finite work regularization

The state of the quantum system in question is far-from-equilibrium due to the influence of the
time-dependent potential of an electric field. Then there exists the problem of time dependence
for average values which we discuss here. In a physically correct statement of the problem,
we only refer to a quasi-constant electric field which is effectively acting for a finite time
T ,E(x0) = E for t1 � x0 � t2, t2 = −t1 = T/2, and then does finite work in a finite volume.
Out of the time interval T an electric field is absent. Furthermore, we call it T-constant field.
In this case the initial vacuum is the vacuum of free particles. General aspects of the special
regularization with respect to time T by using the T-constant field was discussed in [4]. Now,
we need to apply those results for calculating the leading terms in 〈j3〉a/p and 〈Tµν〉a/p at
T → ∞.

The mean number of particles created by the external field from the initial vacuum is

Rcr
n = 〈0, in|a†

n(out)an(out)|0, in〉 = |G(−|+)|2, (13)

where the standard volume regularization was used, so that δ(p − p′) → δp,p′ . If the time T
is sufficiently large: T 	 T0, where T0 = (1 + λ)/

√
eE is called the stabilization time, and

eET/2 	 |p3|, then

Rcr
n = e−πλ

[
1 + O

([
1 + λ

ξ±1

]3
)]

, −
√

eE
T

2
� ξ1 � −K,

(14)

λ = m2 +
〈
P 2

⊥
〉

eE
, P⊥ = (P 1, P 2, 0), ξ±1 = (∓eET/2 − p3)/

√
eE,

where K is a sufficiently large arbitrary constant, K 	 1 + λ,
〈
P 2

⊥
〉

is the conserved average
value of P 2

⊥, and p3 is longitudinal momentum. The Rcr
n distribution for large longitudinal

momenta, |p3| 	 eET/2, decreases, Rcr
n = O

([
λ
/
ξ 2

1

]3)
. The latter expression allows one

to consider the limit T → ∞ at any given quantum number. In this limit, the distribution
function takes the simple form Rcr

n = e−πλ which coincides with the expressions obtained in
the constant electric field [5].

The distribution Rcr
m plays the role of the cutoff factor for the integral (9) and similar

representation of Sp, then the contributions of Sa/p are convergent. If the time interval
x0 − t1 = x0 + T/2 is sufficiently large,

√
eE(x0 + T/2) 	 1 + m2/eE, we can extract the

leading contributions at large T (marked as a subscript ‘as’) in the representations (11 ), (12)
and then, integrating over quantum numbers and calculating derivatives, obtain that

〈jµ〉a/p
as = −δ3

µ2e(1/2 ± x0/T )ncr,

〈T00〉a/p
as = 〈T33〉a/p

as = −eET (1/2 ± x0/T )2ncr,

〈T11〉a/p
as = 〈T22〉a/p

as

= ñ

{
∓ ln[

√
eE(T /2 ± x0)] + O(ln K) if

√
eE(T /2 ± x0) > K

O(ln K) if
√

eE(T /2 ± x0) � K
(15)

where K is an arbitrary constant, K 	 1 + m2/eE,
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ncr = e2EBT

4π2
coth

πB

E

[
exp

{
−π

m2

eE

}
+ O

(
K√
eET

)]
,

(16)

ñ = e2B2

4π2 sinh2 (πB/E)
exp

{
−π

m2

eE

}
.

Note that here ncr is a characteristic number density of excitable states in the external field
and, as we see subsequently, it is the same as the number density of the created pairs for time
T of the duration of the electric field.

The current density and the EMT of the final particles created from vacuum by the
T-constant field for the large time interval x0 − t1 = x0 + T/2 	 K/

√
eE can be presented as

j cr
µ = 〈jµ〉in − 〈jµ〉out, T cr

µν = 〈Tµν〉in − 〈Tµν〉out, (17)

where the terms 〈jµ〉out and 〈Tµν〉out are used to take into account the normal ordering of the
current density and the EMT operators with respect to the creation and annihilation operators
of the final particles. Then one gets from (11) and (15) that

j cr
µ = 〈jµ〉pas − 〈jµ〉aas = δ3

µ2e(2x0/T )ncr,
(18)

T cr
µν = 〈Tµν〉pas − 〈Tµν〉aas,

and

〈T00〉cr = 〈T33〉cr = 2eEx0ncr,

〈T11〉cr = 〈T22〉cr

= ñ

{
ln[eE((T /2)2 − (x0)2)] + O(ln K) if

√
eE(T /2 − x0)〉K

ln[
√

eE(T /2 + x0)] + O(ln K) if
√

eE(T /2 − x0) � K.
(19)

At x0 = t2 = T/2 one gets from (18), (19) the expressions for the total current densities and
the EMT of the particles created.

4. Conclusion

We finally obtain the average values of the current density and the EMT as follows:

〈jµ〉in = −〈jµ〉aas, 〈Tµν〉in
eff = Re〈Tµν〉ceff − 〈Tµν〉aas . (20)

As we have seen, the T-dependent contributions to 〈jµ〉ā and 〈Tµν〉ā appear due to the vacuum
instability and then come with the factor exp{−πm2/eE}. This factor is exponentially small
for a weak electric field, m2/eE 	 1, and the effect can actually be observed as soon as the
external field strength approaches the characteristic value Ec = m2/e. On the other hand,
the term Re〈Tµν〉ceff is T-independent and its contribution is not small whether the electric
field is weak or strong. When the T-constant electric field is switched off at x0 > T/2, the
local vacuum contribution of E in Re〈Tµν〉ceff is absent but the global contribution given by
〈Tµν〉aas

∣∣
x0=T/2 is present. Thus, in the general case both kinds of contributions are important.

Using expression (20), we find a condition for validity of a strong constant electric field
concept. With a very strong E field, m2/eE � 1 (B = 0), and large T one gets the well-known
asymptotic expression of the Re〈T00〉ceff vacuum energy density

Re〈T00〉ceff = − e2

24π2
E2 ln

eE

m2
.

It is T-independent contribution. The energy density of a classic electric field is E2/8π . Then
it seems that an electric field concept is physically meaningful when e2

3π
ln eE

m2 � 1. But when
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T is large one has to give attention to the T-dependent term 〈Tµν〉aas . At x0 = T/2, we have

−〈Tµν〉aas = e2E2

4π3
eET 2.

Of course, one can neglect a back-reaction on an electric field only if the last term is far less
than E2/8π . Thus, the true condition for validity of a strong constant electric field concept is
the following:

1 � eET 2 � π2

2e2
.

All the results for pair creation are valid within the accuracy of the analysis at low density
and temperature, 	 � eET .
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